Equation of State for Compressed Liquids from Surface Tension

M. H. Ghatee^{1,2} and A. Boushehri¹

Received September 18, 1995

A method for predicting an analytical equation of state for liquids from the surface tension and the liquid density at the freezing temperature (γ_t, ρ_t) as scaling constants is presented. The reference temperature, T_{ref} , is introduced and the product $(T_{ref}T_1^{1/2})$ is shown to be an advantageous corresponding temperature for the second virial coefficients, $B_2(T)$, of spherical and molecular fluids. Thus, $B_2(T)$ follows a promising corresponding-states principle and then calculations for $\alpha(T)$ and b(T), the two other temperature-dependent constants of the equation of state, are made possible by scaling. As a result, (γ_t, ρ_f) are sufficient for the determination of thermophysical properties of fluids from the freezing line up to the critical temperature. The present procedure has the advantage that it can also be used in cases where T_c and P_c are not known or the vapor pressure is too small to allow accurate measurements. We applied the procedure to predict the density of Lennard-Jones liquids over an extensive range of temperatures and pressures. The results for liquids with a wide range of acentric factor values are within 5%.

KEY WORDS: compressed liquids; corresponding states; equation of state; surface tension.

1. INTRODUCTION

The equation of state is the most fundamental equation in providing a basis for accurate thermophysical properties. Efforts have been made to make progress in this field on both an empirical and a statistical mechanical basis, although the wide ranges of the type of intermolecular potentials that are associated with the different systems leave many unsolved

¹ Department of Chemistry, Shiraz University, Shiraz 71454, Iran.

² To whom correspondence should be addressed.

problems. The applicability of an equation of state to a given system is reliable if, in the first place, accurate input data are available. In practice, the input data may not be available for a given system or it may not be possible to measure these data accurately for some systems. Hence, there is a need to extend the method by using alternative procedures.

In recent works, we have demonstrated that the cohesive energy density and the density at triple point are sufficient to predict thermophysical properties of compressed normal liquids [1], their mixtures [2], and molten alkali metals [3]. The input data here are used to calculate the temperature-dependent constants, $B_2(T)$, $\alpha(T)$, and b(T), of the statistical mechanical equation of state derived by Song et al. [4]. $B_2(T)$, the second virial coefficient, is calculated from a corresponding-states correlation for the normal liquids. Both $\alpha(T)$, which is the contribution of the repulsive side of the potential function to the second virial coefficien, and b(T), which is the analogue of the van der Waals covolume, can be calculated by integration. This requires the pair potential function to be known. However, $\alpha(T)$ and b(T) can also be calculated from the second virial coefficient by scaling. Therefore, the second virial coefficient can be used to characterize the entire equation of state, over the entire range of temperatures and pressures. All the parameters plus a free parameter of the equation of state, Γ , that is to be determined by iteration, characterize a particular system for thermophysical properties from the freezing line up to the critical temperature.

Therefore, the second virial coefficient is the central quantity in the treatment of the equation of state. Theoretically, it can be calculated from the pair potential function [5] and the radial distribution function in the gaseous state. It is interesting to see that, among the thermodynamic functions that can be measured directly, the surface energy, E_s can also be calculated from the same information [6, 7]. Determination of the radial distribution function is not an easy task. However, since $B_2(T)$ and E_s use the same parametric function, a correlation can be constructed between them. This is well justified because both $B_2(T)$ and E_s represent the structure and the associated interaction through the radial distribution function and the potential function, respectively. Thus, an alternative procedure to apply the statistical-mechanical equation of state to normal fluids is to take an energy function like the surface energy that is closely related to the intermolecular potential of the system at a reference point. The reduced form of this function can then be used in a corresponding-states correlation for second virial coefficient. Specifically, as we show in the next section, the equation of state involves a corresponding-states principle. As the nature of the alternative procedure implies, the corresponding states principle retains its value.

The purpose of this paper is to present a method for predicting the equation of state of a compressed liquid from properties that are readily available at ordinary pressure and temperature. In particular, we use the surface tension and the liquid density at the triple point as two parameters that can correlate and predict the behavior of compressed liquids. However, the problem we wish to consider here involves predictions for liquids for which T_c and P_c are not known or the vapor pressure is too small, either because they have not been measured or because the liquids decompose at high temperatures.

2. THEORETICAL BACKGROUND

We consider the statistical-mechanical equation of state derived by Song and Mason [4], which is based on the Week-Chandler-Anderson (WCA) perturbation theory for the condensed state. The derivation begins with the equation relating the pressure to the pair distribution function, g(r),

$$P/\rho kT = 1 - (2\pi\rho/3kT) \int_0^\infty \left[\frac{\partial u}{\partial r} g(r) r^3 dr \right]$$
(1)

where P is the pressure, ρ is the density, kT is the thermal energy per molecule, and $\partial u/\partial r$ is the derivative of the intermolecular potential function with respect to the distance r. Upon applying the perturbation scheme of the WCA method to the potential function and working out a correction for attractive forces, the equation of state reads

$$P/\rho kT = 1 - [(\alpha - B_2) \rho/(1 + 0.22\Gamma b\rho)] + \alpha \rho G(b\rho)$$
(2)

where the new corresponding-states principle has the form

$$G(b\rho)^{-1} = \{(1/\alpha\rho)[Z - 1 + (\alpha - B_2)\rho/(1 + 0.22\Gamma b\rho)]\}^{-1} \approx (1 - \Gamma b\rho)$$
(3)

and $Z = P/\rho kT$ is the compressibility factor. Here $G(b\rho)$ is the average pair distribution function at contact for equivalent hard convex bodies that still have the pairwise additivity of the intermolecular forces as in g(r). The many-body nature of the system may be contained in $G(b\rho)$ [8]. The value of B_2 can be calculated by integration if the form of potential function is known. α is the contribution of the repulsive side of the potential function to the second virial coefficient and it takes care of the softness of the potential function. b is the analogue of van der Waals covolume. Both $\alpha(T)$, and b(T) can be calculated by integration if the potential function is known. $G(b\rho)^{-1}$ is a function of $b\rho$ only and satisfies corresponding states, varying

. . .

linearly with slope Γ over the whole range of temperatures from the freezing line up to the critical point. The functional form of $G(b\rho)^{-1}$ implies that, according to corresponding states, all the P-V-T data collapse to a single line. The value of Γ , determined from P-V-T data by iteration, along with $B_2(T)$, $\alpha(T)$, and b(T), characterizes the thermodynamic properties of particular systems.

According to Eq. (2), knowing the form of the potential function, the thermophysical properties of both spherical and nonspherical fluids can be characterized over the entire range of temperatures including compressed liquids. The form of Lennard–Jones (12–6) potential function reproduces thermophysical properties within experimental uncertainty [8]. More accurate potential functions based on the Hartree–Fock–Dispersion interaction potential are also available [8]. However, it is not the purpose of this paper to use any of these functions. Rather, it will be shown that the idea of minimal as well as practical input data of the analytical equation of state can be extended nicely to include other thermodynamic function, e.g., the surface energy.

3. CORRELATION PROCEDURE

The method we follow here is to use an energy function involving the surface tension as a scaling constant for the calculation of the temperaturedependent constants, $B_2(T)$, $\alpha(T)$, and b(T), in Eq. (2). This is based on the fact that the surface tension is a measure of the cohesive energy density and that the ranges of the effective forces are not larger than the molecular dimension [9, 10]. A suitable form of the energy function is $\gamma \rho^{-2/3} N^{1/3}$, where y is the surface tension, ρ is the molar liquid density, and N is Avogadro's number. Compared with thermal energy, the reduced form of the function, with the triple point as a reference temperature, takes the form $\gamma_{\rm tr} \rho_{\rm tr}^{-2/3} N^{1/3}/RT$. The term $\gamma_{\rm tr} \rho_{\rm tr}^{-2/3} N^{1/3}/R$ is referred to as $T_{\rm ref}$. It should be emphasized that the reference temperature is not an essential choice, but merely a convenient one. Our final correlation scheme is selfcorrecting the normal freezing temperature would probably work as well. Apparently the *shape* effects described by ω , the acentric factor, affect the γ_{tr} and ρ_{tr} (often approximated by ρ_{f}) in such a way as to tend to compensate for their influence on $B_2(T)$.

For a number of gases and liquids ranging from simple gases such as neon and argon to more complex liquids such as octane and toluene, we tried to relate $B_2^*(T)$ ($=\rho_f B_2(T)$) to T_{ref} , with the intention of obtaining a corresponding-states correlation. As was indicated by large number of scattered data point particularly at low temperatures, we concluded that T_{ref} fails to be such a corresponding temperature quantity for $B_2^*(T)$. The

way that scattering among the fluids occurs indicated that, for our purpose, another parameter corresponding to the nature of each fluid has to be coupled with $T_{\rm ref}$.

Here it is proposed that the freezing temperature, $T_{\rm f}$, which was shown to be a corresponding temperature for different substances [11], is a suitable choice. This choice can be further justified by noting that $T_{\rm ref}$ contains the surface tension and the liquid density at the freezing temperature. In other words, for different liquids $T_{\rm ref}$ and $T_{\rm f}$ are readily available. Empirically we found that the product $(T_{\rm ref}T_{\rm f}^{1/2})$ is an excellent characteristic corresponding temperature for both the spherical and the molecular liquids. Therefore, the corresponding-states correlation for $B_2^*(T)$ in terms of the two scaling constants can be represented by

$$B_{2}^{*}(T) = 0.0804 - 2.1288T^{*-1} - 8.5597T^{*-2} + 7.4294T^{*-3} - 3.3494T^{*-4}$$
(4)

where

$$T^* = \left[TT^{1/2} / T_{\rm ref} T_{\rm f}^{1/2} \right]^{3/4}$$
(5)

We used the tabulations of Dymond and Smith [12], Vargaftik [13], and Adamson [7] for the second virial coefficients, liquid densities, and surface tensions, respectively, to construct the correlation, Eq. (4), shown

Fig. 1. B_2^* , $\rho_f B_2(T)$, versus $1/T^*$ for methane, ethane, propane, butane, pentane, hexane, heptane, octane, benzene, nitrogen, neon, and argon. Due to extensive overlap of the experimental data, the same marker (square) was used. The solid line represents the polynomial fit.

in Fig. 1. As can be seen, there is a strong correlation for all fluids considered over the entire range of temperature. It should be mentioned that T^* is original and is responsible for a promising correlation, allowing the second virial coefficient to be calculated accurately.

For Lennard-Jones fluids, Song and Mason [14] have obtained relationships that allow the calculation of $\alpha(T)$ and b(T), taking into account that they depend only slightly on the details of the shape of the potential function. In practice, this requires Eq. (4) to be solved for the reduced Boyle's temperature and the reduced Boyle's volume, so that

$$\rho_{\rm f} \alpha = a_1 [\exp(-c_1 T^*)] + a_2 [1 - \exp(-c_2 / T^{*1/4})]$$
(6)

and

$$\rho_{\rm f}b = a_1[(1-c_1T^*)\exp(-c_1T^*)] + a_2[1-(1+0.25c_2/T^{*1/4})\exp(-c_2/T^{*1/4})]$$
(7)

where

$$a_1 = -0.01054, \quad c_1 = 0.7613$$

 $a_2 = 2.9387, \quad c_2 = 1.3227$ (8)

The characteristic free parameter of the fluids in the equation of state, Γ , can be calculated from the two scaling constants at freezing temperature (γ_f and p_f) in a single iteration because it is just a correction factor.

4. RESULTS AND DISCUSSION

The cohesive energy density can be represented by both the heats of vaporization and the surface energy. It would be attractive to correlate the heat of vaporization with the surface tension and then use the data from our previous work [1, 2], but we noticed that the correlation is poor. This observation is in accord with the fact that lattice theories are now regarded as a rather unsuccessful chapter in the history of liquids [15].

In Eq. (4), the term $(T/T_f)^{1/2}$ reduces the scattering among the fluids with a wide range of acentric factors from Ne and Ar ($\omega = 0$) to octane ($\omega = 0.394$). Therefore, this term is mainly responsible for the accurate value prediction of the second virial coefficient, without which no principle of corresponding states of moderate accuracy existed even for spherical liquids over the appreciable range of temperature. $T^{*4/3}$ makes a corresponding states correlation quite well, but T^* finds the best fit to Eq. (4). We took a large number of data (277 data points) to prevent any oscillations due to the high degree of the polynomial, e.g., Eq. (4).

Т (К)	P (bar) ^b	ρ_{calc} (mol·L ⁻¹)	ρ_{expt} (mol·L ⁻¹)	Dev. (%) [¢]
		C ₈ H ₁₈		
253 15	7907(-4)	6 1 7 9	6.431	
263.15	1.800(-3)	6 1 5 3	6 360	-3 365
273.15	3813(-3)	6121	6 289	-2751
283.15	7507(-3)	6.084	6 219	-2.714
293.15	1.395(-2)	6.042	6 148	-1.755
303.15	2.460(-2)	5.995	6.077	-1.369
313.15	4.147(-2)	5.945	6.006	-1.021
323.15	6.713(-2)	5.891	5.934	-0.725
333.15	1.049(-1)	5.833	5.861	-0.479
343.15	1.587(-1)	5.774	5.787	-0.230
353.15	2.334(-1)	5.712	5.712	-0.008
363.15	3.345(-1)	5.649	5.636	0.223
373.15	4.683(-1)	5.584	5.559	0.450
383.15	6.420 (-1)	5.517	5.480	0.676
393.15	8.635 (-1)	5.450	5.399	0.940
403.15	1.141 (00)	5.382	5.316	1.229
413.15	1.484 (00)	5.314	5.231	1.566
423.15	1.902 (00)	5.244	5.143	1.918
433.15	2.406 (00)	5.174	5.054	2.327
		C4H4-CH		
		0.750	10.114	2 6 2 2
223.15	1.38/(-4)	9.759	10.114	- 5.035
233.15	3.853(-4)	9.740	0.013	-1930
243.15	9.600(-4)	9.724	9.912	-1.235
255.15	2.173(-3)	9.091	9711	-0.641
203.13	4.373(-3)	9.597	9611	-0.146
2/3.13	3.900(-3)	9.537	9 510	0.282
203.15	1.075(-2)	9 469	9,409	0.632
303.15	4889(-2)	9.394	9.308	0.914
313 15	7.888(-2)	9.313	9.207	1.136
323.15	1.228(-1)	9.226	9.104	1.321
33315	1.852(-1)	9.135	9.001	1.467
343 15	2.716(-1)	9.040	8.897	1.584
353.15	3.883(-1)	8.942	8.790	1.695
363.15	5.423(-1)	8.841	8.683	1.787
373.15	7.417(-1)	8.737	8.574	1.860
383.15	9.955 (-1)	8.632	8.464	1.949
393.15	1.312 (00)	8.526	8.355	2.005
403.15	1.704 (00)	8.418	8.246	2.039
413.15	2.180 (00)	8.309	8.138	2.063
423.15	2.752 (00)	8.199	8.029	2.073
433.15	3.433 (00)	8.087	/.811	3.407

Table I. Density of the Liquid State of Fluids at Saturation Pressures^a

" The results of the same calculations for all the substances in Table III are better than 5%.

^b The values in parentheses are the powers of 10.

^c The percentage deviations calculated before the densities have been rounded off.

Т (К)	P (bar) ^b	ρ_{calc} (mol·L ⁻¹)	p_{expt} (mol·L ⁻¹)	Dev. (%) ^c
		Xe		
163	8.998 (-1)	22.687	22.635	0.228
164	9.546(-1)	22.617	22.574	0.189
166	1.071 (00)	22.478	22.452	0.114
168	1.199 (00)	22.339	22.331	0.038
170	1.337 (00)	22.199	22.216	-0.078
172	1.488 (00)	22.059	22.102	-0.195
174	1.651 (00)	21.918	21.980	-0.284
176	1.827 (00)	21.777	21.866	-0.408
178	2.017 (00)	21.636	21.759	-0.570
180	2.222 (00)	21.494	21.637	-0.667
184	2.678 (00)	21.210	21.417	-0.974
188	3.200 (00)	20.923	21.188	-1.267
192	3.794 (00)	20.635	20.967	-1.610
196	4.465 (00)	20.344	20.754	- 2.015
200	5.220 (00)	20.051	20.526	- 2.367
204	6.064 (00)	19.754	20.289	- 2.710
208	7.004 (00)	19.453	20.069	- 3.164
212	8.045 (00)	19.149	19.840	- 3.609
216	9.194 (00)	18.840	19.596	-4.015
220	1.046 (+1)	18.526	19.345	-4.421

Table I. (Continued)

Table II. Density of the Liquid State of Fluids at High Pressures^{a,b}

Т (К)	P (bar)	ρ_{calc} (mol·L ⁻¹)	p_{expt} (mol·L ⁻¹)	Dev. (%) ^c
		C ₈ H ₁₈		
373.15	20 30 40 50 60 70 80 90 100 120 140 160 180 200	5.597 5.604 5.611 5.618 5.625 5.631 5.637 5.644 5.650 5.662 5.674 5.686 5.697 5.708	5.608 5.626 5.641 5.656 5.670 5.685 5.696 5.711 5.726 5.748 5.775 5.794 5.817 5.816	$\begin{array}{c} -0.204 \\ -0.400 \\ -0.533 \\ -0.668 \\ -0.803 \\ -0.957 \\ -1.046 \\ -1.184 \\ -1.341 \\ -1.525 \\ -1.778 \\ -1.899 \\ -2.108 \\ -2.251 \end{array}$

" To cover the whole range, some results for low pressures inserted.

^b The results of the same calculations for all the substances in Table III are better than 5%.

^c The percentage deviations calculated before the densities have been rounded off.

$\begin{array}{c ccccccccccccccccccccccccccccccccccc$
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$
$\begin{array}{cccccccccccccccccccccccccccccccccccc$
100 5.420 5.434 -0.265 120 5.439 5.465 -0.476 140 5.457 5.496 -0.710
$\begin{array}{cccccccccccccccccccccccccccccccccccc$
140 5.457 5.496 -0.710
160 5.475 5.523 -0.886
180 5.492 5.548 -1.019
200 5.508 5.569 -1.110
453.15 20 5.062 4.927 2.673
30 5.079 4.960 2.339
40 5.096 4.991 2.055
50 5.112 5.017 1.858
60 5.128 5.043 1.657
70 5.144 5.069 1.452
80 5.159 5.093 1.281
90 5.173 5.117 1.088
100 5.187 5.141 0.891
120 5.215 5.180 0.665
140 5.241 5.220 0.392
160 5.266 5.255 0.210
180 5.289 5.287 0.044
200 5.312 5.316 -0.067
C ₆ H ₆
300 1 11.473 11.280 1.682
10 11.477 11.280 1.717
20 11.481 11.290 1.664
30 11.485 11.300 1.612
40 11.489 11.310 1.559
50 11.493 11.320 1.506
100 11.512 11.360 1.320
200 11.549 11.472 0.666
300 11.584 11.534 0.431
400 11.618 11.618 0.002

Table II. (Continued)

Т (К)	P (bar)	ρ_{calc} (mol·L ⁻¹)	ρ_{expt} (mol·L ⁻¹)	Dev. (%) ^c
350	1	10.782	10.581	1.866
	10	10.791	10.590	1.867
	20	10.799	10.607	1.777
	30	10.808	10.616	1.777
	40	10.817	10.634	1.696
	50	10.825	10.642	1.687
	100	10.867	10.705	1.494
	200	10.946	10.822	1.130
	300	11.018	10.933	0.770
	400	11.085	11.037	0.434
400	1	0.0310	0.0306	1.293
	10	10.057	9.833	2.226
	20	10.073	9.856	2.155
	30	10.089	9.871	2.160
	40	10.105	9.894	2.088
	50	10.121	9.909	2.092
	100	10.195	10.002	1.891
	200	10.331	10.169	1.568
	300	10.451	10.325	1.207
	400	10.560	10.468	0.868
		Xe		
400	10	0.308	0.307	0.273
	20	0.628	0.628	-0.077
	30	0.963	0.963	-0.046
	40	1.313	1.315	-0.176
	50	1.680	1.684	-0.234
	60	2.064	2.071	-0.331
	70	2.466	2.477	-0.437
	80	2.887	2.903	-0.564
	100	3.779	3.813	-0.890
	150	6.158	6.324	-2.703
500	10	0.243	0.243	0.050
	20	0.490	0.490	-0.067
	30	0.742	0.742	-0.047
	40	0.998	0.999	-0.124
	50	1.257	1.260	-0.216
	60	1.521	1.525	-0.247
	70	1.788	1.794	-0.356
	80	2.059	2.067	-0.390
	100	2.608	2.623	-0.575
	150	4.004	4.053	-1.232

Table II. (Continued)

<i>Т</i> (К)	P (bar)	ρ_{calc} (mol·L ⁻¹)	ρ_{expl} (mol·L ⁻¹)	Dev. (%) ^c
600	10	0.202	0.201	0.349
	20	0.405	0.404	0.183
	30	0.609	0.609	0.052
	40	0.814	0.814	-0.020
	50	1.021	1.021	-0.032
	60	1.228	1.230	-0.163
	70	1.437	1.439	-0.118
	80	1.646	1.649	-0.176
	100	2.065	2.071	-0.282
	150	3.112	3.130	-0.586

Table II. (Continued)

Table III. Input Data Including Γ

Substance	$(J \cdot m^{-2})$	$\rho_{\rm f}$ (mol·m ⁻³)	<i>T</i> _f (K)	Г
 Ne	0.00590	61856.51	24.5	0.3960
Ar	0.0132 ^a	35338.78"	83.78	0.3970
Kr	0.0162*	29140.81 ^{<i>b</i>}	115.76	0.3970
Xe	0.0186°	22635.19°	161.30	0.3940
N ₂	0.01217	30903.80	63.15	0.4250
СН	0.01856	28257.56	90.66	0.4408
$C_2 H_6$	0.03224	21909.04	89.88	0.4801
C ₃ H ₈	0.03689	16640.01	85.46	0.5034
$n-C_4H_{10}$	0.03224	12391.43	134.48	0.4810
n-C ₅ H ₁₂	0.03361	10552.08	143.48	0.5016
$n-C_6H_{14}$	0.03099	8781.30	177.83	0.4940
$n - C_7 H_{16}$	0.03212	7719.70	182.56	0.4950
$n-C_8H_{18}$	0.02919	6709.09	216.37	0.4960
C6H6	0.03089	11554.16	278.68	0.4321
C ₆ H ₅ -CH ₃	0.04318	10582.32	178.16	0.4985

"These values are at 84.3 K.

^h These values are at 117 K.

^c These values are at 163 K.

Table I contains the calculated densities for different fluids with a wide range of acentric factors including atomic fluids. Table II contains some results for the liquids at high pressures. We initially calculated the densities for all the compounds in Table III. Only the results for a typical simple and complex liquids are presented. The P-T and surface tension data were taken from Refs. 7, 9, and 13. The results for compressed liquids at any pressures and temperatures are better than 5%. This is about the same as the accuracy of the prediction based on constants T_c , P_c , and ω , the critical temperature and the critical pressure, and the acentric factor, respectively [16]. This indicates that the physical properties can be predicted from just two scaling constants, the surface tension and the liquid density at freezing temperatures, which can readily be measured. Neon shows some deviations, although not appreciably, probably due to the quantum effect.

Our procedure successfully predicts a statistical-mechanical equation of state for simple and complex liquids over a wide range of temperatures and pressures. It should be mentioned that an equation of state plus a functional form of the heat capacity allows the fundamental thermodynamic properties to be determined.

The values of Γ for the different fluids are given in Table III. Although it is a characteristic free parameter that incorporates the inaccuracy associated with the temperature-dependent constants too, it is in accordance with the earlier finding of a linear relationship for the corresponding-states function, $G(b\rho)^{-1}$.

In summary, before this work, if experimental values of $B_2(T)$ were not available, one had a choice of using (i) ε and r_m , the potential well depth and position of its minimum, respectively, or (ii) ΔH_v and ρ_f , the heat of vaporization (equivalently cohesive energy [1]) and the density at freezing temperature, respectively, to calculate the temperature dependent constants in Eq. (2). But accurate values of the second virial coefficient are not always available. In, the case that the substance is thermally unstable, to allow the vapor pressures to be determined, the present procedure opens a simple channel to use Eq. (2) for calculating thermophysical properties from just γ_f and ρ_f .

ACKNOWLEDGMENT

We are indebted to the Research Council of the Shiraz University for their support of this work.

REFERENCES

- 1. A. Boushehri and E. A. Mason, Int. J. Thermophys. 14:685 (1993).
- 2. A. Boushehri and H. Keshavarz, Bull. Chem. Soc. Jpn. 67:1213 (1994).

- 3. M. H. Ghatee and A. Boushehri, Int. J. Thermophys. 16:1429 (1995).
- 4. Y. Song and E. A. Mason, J. Chem. Phys. 91:7840 (1989).
- 5. D. A. McQuarrie, Statistical Mechanics (Harper & Row, New York, 1976), Chap. 13.
- 6. P. D. Shoemaker. G. W. Paul, and M. De Chazal, J. Chem. Phys. 52:491 (1970).
- 7. A. W. Adamson, Physical Chemistry of Surfaces, 5th ed. (Wiley, New York, 1990), p. 61.
- 8. G. Ihm, Y. Song, and E. A. Mason, J. Chem. Phys. 94:3839 (1991).
- 9. H. T. Davis and L. E. Scriven, J. Phys. Chem. 25:2805 (1976).
- 10. E. A. Mason, Am. J. Phys. 34:1193 (1966).
- 11. E. A. Guggenhiem, J. Chem. Phys. 13:256 (1945).
- 12. J. H. Dymond and E. B. Smith, *The Virial Coefficient of Pure Gases and Mixtures* (Clarendon Press, Oxford, 1980).
- 13. N. B. Vargaftik, *Handbook of Physical Properties of Liquids and Gases*, 2nd ed. (Hemisphere, Washington DC, 1975).
- 14. Y. Song and E. A. Mason, Fluid Phase Equil. 75:105 (1992).
- 15. Y. Song, B. Caswell, and E. A. Mason, Int. J. Thermophys. 12:855 (1991).
- 16. F.-M. Tao and E. A. Mason, Int. J. Thermophys. 13:1053 (1992).