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Equation of State for Compressed 
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A method for predicting an analytical equation of state for liquids from the sur- 
face tension and the liquid density at thc freezing temperature I}'~, Pr) as scaling 
constants is presented. The reference temperature, T~cr, is introduced and the 
product (T~efT~!2) is showri to be an advantageous corresponding temperature 
for the second virial coefl]cients, B=(T), of spherical and molecular fluids. Thus, 
Bz(T) follows a promising corresponding-states principle and then calcttlations 
for ~(T) and b(T), tile two other temperature-dependent constants of the equa- 
tion of state, are made possible by scaling. As a result, (;,f, Pf) are sufficient for 
tile determination of thermophysical properties of fluids from the freezing line 
up to the critical temperature. The present procedure has the advantage that it 
can also be used in cases where T~. and P, are not known or the vapor pressure 
is too small to allow accurate measurements. We applied the procedure to 
predict the density of Lennard-Jones liquids over an extensive range of tem- 
peratures and pressures. The results for liquids with a wide range of acentric 
factor values are within 5 o/o. 

KEY WORDS: compressed liquids: corresponding states: equation of state: 
surface tension. 

1. I N T R O D U C T I O N  

T h e  e q u a t i o n  o f  s t a t e  is the  m o s t  f u n d a m e n t a l  e q u a t i o n  in p r o v i d i n g  a 

bas i s  for  a c c u r a t e  t h e r m o p h y s i c a l  p rope r t i e s .  Effor ts  h a v e  b e e n  m a d e  to  

m a k e  p r o g r e s s  in  t h i s  field o n  b o t h  a n  e m p i r i c a l  a n d  a s t a t i s t i ca l  m e c h a n -  

ical  bas is ,  a l t h o u g h  t he  wide  r a n g e s  o f  the  t ype  o f  i n t e r m o l e c u l a r  p o t e n t i a l s  

t h a t  a re  a s s o c i a t e d  w i t h  the  dif l 'erent  s y s t ems  leave m a n y  u n s o l v e d  
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problems. The applicability of an equation of state to a given system is 
reliable if, in the first place, accurate input data are available. In practice, 
the input data may not be available for a given system or it may not be 
possible to measure these data accurately for some systems. Hence, there is 
a need to extend the method by using alternative procedures. 

In recent works, we have demonstrated that the cohesive energy den- 
sity and the density at triple point are sufficient to predict thermophysical 
properties of compressed normal liquids [1], their mixtures [2],  and 
molten alkali metals [3]. The input data here are used to calculate the 
temperature-dependent constants, B_,(T), c~(T), and b(T), of the statistical 
mechanical equation of state derived by Song et al. [4]. B2(T), the second 
virial coefficient, is calculated from a corresponding-states correlation for 
the normal liquids. Both ~(T), which is the contributton of the repulsive 
side of the potential function to the second virial coefficien, and b(T), 
which is the analogue of the van der Waals covolume, can be calculated by 
integration. This requires the pair potential function to be known. 
However, ~(T) and b(T) can also be calculated from the second virial coef- 
ficient by scaling. Therefore, the second virial coefficient can be used to 
characterize the entire equation of state, over the entire range of tem- 
peratures and pressures. All the parameters plus a free parameter of the 
equation of state, F, that is to be determined by iteration, characterize a 
particular system for thermophysical properties from the fi'eezing line up to 
the critical temperature. 

Therefore, the second virial coefficient is the central quantity in the 
treatment of the equation of state. Theoretically, it can be calculated from 
the pair potential function [5] and the radial distribution function in the 
gaseous state. It is interesting to see that, among the thermodynamic func- 
tions that can be measured directly, the surface energy, Es can also be 
calculated from the same information [6, 7]. Determination of the radial 
distribution function is not an easy task. However, since B2(T) and E~ use 
the same parametric function, a correlation can be constructed between 
them. This is well justified because both B2(T) and E~ represent the struc- 
ture and the associated interaction through the radial distribution function 
and the potential function, respectively. Thus, an alternative procedure to 
apply the statistical-mechanical equation of state to normal fluids is to 
take an energy function like the surface energy that is closely related to the 
intermolecular potential of the system at a reference point. The reduced 
form of this function can then be used in a corresponding-states correlation 
for second virial coefficient. Specifically, as we show in the next section, the 
equation of state involves a corresponding-states principle. As the nature of 
the alternative procedure implies, the corresponding states principle retains 
its value. 
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The purpose of this paper is to present a method for predicting the 
equation of state of a compressed liquid from properties that are readily 
available at ordinary pressure and temperature. In particular, we use the 
surface tension and the liquid density at the triple point as two parameters 
that can correlate and predict the behavior of compressed liquids. 
However, the problem we wish to consider here involves predictions for 
liquids for which T c and Pc are not known or the vapor pressure is too 
small, either because they have not been measured or because the liquids 
decompose at high temperatures. 

2. T H E O R E T I C A L  B A C K G R O U N D  

We consider the statistical-mechanical equation of state derived by 
Song and Mason [4] ,  which is based on the Week-Chandler-Anderson 
(WCA) perturbation theory for the condensed state. The derivation begins 
with the equation relating the pressure to the pair distribution function, 
g(r), 

S P/pkT= 1 - (2z~p/3kT) [&t/Or) g(r) r 3 dr 1) 

where P is the pressure, p is the density, kT is the thermal energy per 
molecule, and &t/Or is the derivative of the intermolecular potential func- 
tion with respect to the distance r. Upon applying the perturbation scheme 
of the WCA method to the potential function and working out a correction 
tbr attractive forces, the equation of state reads 

P/pkT= 1 - [(~ - B2) p/( 1 + 0.22Fbp)] + o~pG(bp) (2) 

where the new corresponding-states principle has the form 

G(bp) - ,={( l /o~p)[Z_ l+(o~_B2)p / ( l+O.22Fbp)]} - '~ (1 -Fbp)  (3) 

and Z = P/pkT is the compressibility factor. Here G(bp) is the average pair 
distribution function at contact for equivalent hard convex bodies that still 
have the pairwise additivity of the intermolecular forces as in g(r). The 
many-body nature of the system may be contained in G(bp) [8].  The value 
of B, can be calculated by integration if the form of potential function is 
known. ~ is the contribution of the repulsive side of the potential function 
to the second virial coefficient and it takes care of the softness of the poten- 
tial function, b is the analogue of van der Waals covolume. Both ~(T), and 
b(T) can be calculated by integration if the potential function is known. 
G(bp)- J is a function of bp only and satisfies corresponding states, varying 
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linearly with slope F over the whole range of temperatures from the 
freezing line up to the critical point. The functional form of G(bp)- 1 implies 
that, according to corresponding states, all the P-V-T data collapse to a 
single line. The value of F, determined from P-V-T data by iteration, 
along with B2(T), o~(T), and b(T), characterizes the thermodynamic 
properties of particular systems. 

According to Eq. (2), knowing the form of the potential function, the 
thermophysical properties of both spherical and nonspherical fluids can be 
characterized over the entire range of temperatures including compressed 
liquids. The form of Lennard-Jones (12-6) potential function reproduces 
thermophysical properties wi th in  experimental uncertainty [8]. More 
accurate potential functions based on the Hartree-Fock-Dispersion inter- 
action potential are also available [8]. However, it is not the purpose of 
this paper to use any of these functions. Rather, it will be shown that the 
idea of minimal as well as practical input data of the analytical equation 
of state can be extended nicely to include other thermodynamic function, 
e.g., the surface energy. 

3. CORRELATION PROCEDURE 

The method we follow here is to use an energy function involving the 
surface tension as a scaling constant for the calculation of the temperature- 
dependent constants, B_,(T), ~(T), and b(T), in Eq. (2). This is based on 
the fact that the surface tension is a measure of the cohesive energy density 
and that the ranges of the effective forces are not larger than the molecular 
dimension [9, 10]. A suitable form of the energy function is yp-2/3Nl/3, 
where y is the surface tension, p is the molar liquid density, and N is 
Avogadro's number. Compared with thermal energy, the reduced form of 
the function, with the triple point as a reference temperature, takes the 
form ~u_p~2/3Nt/3/RT. The term ),t,.p~2/3Nl/3/R is referred to as Tr~j.. It 
should be emphasized that the reference temperature is not an essential 
choice, but merely a convenient one. Our final correlation scheme is self- 
correcting the normal freezing temperature would probably work as well. 
Apparently the shape effects described by co, the acentric factor, affect the 
Y,r and Ptr (often approximated by Pr) in such a way as to tend to compen- 
sate for their influence on B2(T). 

For a number of gases and liquids ranging from simple gases such as 
neon and argon to more complex liquids such as octane and toluene, we 
tried to relate B*(T) (=prB2(T)) to Trot, with the intention of obtaining 
a corresponding-states correlation. As was indicated by large number of 
scattered data point particularly at low temperatures, we concluded that 
Trer fails to be such a corresponding temperature quantity for B*(T). The 
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way that scattering among the fluids occurs indicated that, for our purpose, 
another parameter corresponding to the nature of each fluid has to be 
coupled with Tre r. 

Here it is proposed that the freezing temperature, Tr, which was 
shown to be a corresponding temperature for different substances [ 11 ], is 
a suitable choice. This choice can be further justified by noting that Tref 
contains the surface tension and the liquid density at the freezing tem- 
perature. In other words, for different liquids Trcr and Tr are readily 
available. Empirically we found that the product (TrefT~/2) is an excellent 
characteristic corresponding temperature for both the spherical and the 
molecular liquids. Therefore, the corresponding-states correlation for 
B*(T) in terms of the two scaling constants can be represented by 

B*(T) = 0.0804 - 2.1288T* - l  _ 8.5597T* -2 + 7.4294T* -3 _ 3.3494T* -4 

(4) 
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T *  = 1" TTI/2/TrefT~/2] 314 (5) 

We used the tabulations of Dymond and Smith [ 12], Vargaftik [ 13], 
and Adamson 17] for the second virial coefficients, liquid densities, and 
surface tensions, respectively, to construct the correlation, Eq. (4), shown 

where 

0 0.5 1 1.5 
I/T* 

Fig. 1. B,*, prB,_(T), versus l/T* for methane, 
ethane, propane, butane, pentane, hexane, heptane, 
octane, benzene, nitrogen, neon, and argon. Due 
to extensive overlap of the experimental data, the 
same marker (square) was used. The solid line 
represents the polynomial fit. 
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in Fig. 1. As can be seen, there is a strong correlation for all fluids con- 
sidered over the entire range of temperature. It should be mentioned that 
T* is original and is responsible for a promising correlation, allowing the 
second virial coefficient to be calculated accurately. 

For Lennard-Jones fluids, Song and Mason [ 14] have obtained rela- 
tionships that allow the calculation of ~(T) and b(T), taking into account 
that they depend only slightly on the details of the shape of the potential 
function. In practice, this requires Eq. (4) to be solved for the reduced 
Boyle's temperature and the reduced Boyle's volume, so that 

and 

where 

pr0c = al[exp( - c, T*)] + a2[ 1 - exp( - c 2 / T *  1/4)] 

prb=al [ (1  - c l  T * ) e x p ( - c l  T*)] 

+ a2[ 1 - ( 1 + 0.25c2/T* 1/4) exp( - c2/T* 1/4)] 

(6) 

(7) 

aj = --0.01054, cl =0.7613 
(8) 

a2 = 2.9387, c2 = 1.3227 

The characteristic free parameter of the fluids in the equation of state, F, 
can be calculated from the two scaling constants at freezing temperature 
(Yr and Pr) in a single iteration because it is just a correction factor. 

4. RESULTS AND DISCUSSION 

The cohesive energy density can be represented by both the heats of 
vaporization and the surface energy. It would be attractive to correlate the 
heat of vaporization with the surface tension and then use the data from 
our previous work [ 1, 2], but we noticed that the correlation is poor. This 
observation is in accord with the fact that lattice theories are now regarded 
as a rather unsuccessful chapter in the history of liquids [ 15 ]. 

In Eq. (4), the term (T/Tr) v2 reduces the scattering among the fluids 
with a wide range of acentric factors from Ne and Ar (co = 0) to octane 
(co=0.394). Therefore, this term is mainly responsible for the accurate 
value prediction of the second virial coefficient, without which no principle 
of corresponding states of moderate accuracy existed even for spherical 
liquids over the appreciable range of temperature. T .4/3 makes a corre- 
sponding states correlation quite well, but T* finds the best fit to Eq. (4). 
We took a large number of data (277 data points) to prevent any oscilla- 
tions due to the high degree of the polynomial, e.g., Eq. (4). 
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Table 1. Density of the Liquid State of Fluids at Saturation Pressures ~ 

951 

T P Pcalc Pexpt Dev. 
(K) (bar) h (mol. L -I  ) (mol. L - l  ) (%)" 

C8HI8 

253.15 7.907 ( - 4 )  6.179 6.431 -4.079 
263.15 1.800 ( - 3 )  6.153 6.360 -3.365 
273.15 3.813 ( - 3 )  6.121 6.289 -2.751 
283.15 7.507 ( - 3 )  6.084 6.219 -2.214 
293.15 1.395 ( - 2 )  6.042 6.148 - 1.755 
303.15 2.460 ( - 2 )  5.995 6.077 - 1.369 
313.15 4.147 ( - 2 ) 5.945 6.006 - 1.021 
323.15 6.713 ( - 2 )  5.891 5.934 -0.725 
333.15 1.049 ( - 1 ) 5.833 5.861 -0.479 
343.15 1.587 ( - 1 ) 5.774 5.787 -0.230 
353.15 2.334 ( - 1) 5.712 5.712 -0.008 
363.15 3.345 ( - 1 ) 5.649 5.636 0.223 
373.15 4.683 ( - I ) 5.584 5.559 0.450 
383.15 6.420 ( - 1) 5.517 5.480 0.676 
393.15 8.635 ( - 1 ) 5.450 5.399 0.940 
403.15 1.141 (00) 5.382 5.316 1.229 
413.15 1.484 (00) 5.314 5.231 1.566 
423.15 1.902 (00) 5.244 5.143 1.918 
433.15 2.406 (00) 5.174 5.054 2.327 

C6Hs-CH3 

223.15 1.387 ( - 4 )  9.759 10.114 -3.633 
233.15 3.853 ( - 4 )  9.746 10.013 -2.735 
243.15 9.600 ( - 4 )  9.724 9.912 - 1.930 
253.15 2.173 ( - 3 )  9.691 9.811 - 1.235 
263.15 4.573 ( - 3 )  9.649 9.711 -0.641 
273.15 8.960 ( - 3 )  9.597 9.611 -0.146 
283.15 1.673 ( - 2 )  9.537 9.510 0.282 
293.15 2.912 ( - 2 )  9.469 9.409 0.632 
303.15 4.889 ( - 2 )  9.394 9.308 0.914 
313.15 7.888 ( - 2 )  9.313 9.207 1.136 
323.15 1.228 ( - 1 ) 9.226 9.104 1.321 
333.15 1.852 ( - 1) 9.135 9.001 1.467 
343.15 2.716 ( - 1 ) 9.040 8.897 1.584 
353.15 3.883 ( - 1 ) 8.942 8.790 1.695 
363.15 5.423 ( - I ) 8.841 8.683 1.787 
373.15 7.417 ( - 1 ) 8.737 8.574 1.860 
383.15 9.955 ( - 1 ) 8.632 8.464 1.949 
393.15 1.312 (00) 8.526 8.355 2.005 
403.15 1.704 (00) 8.418 8.246 2.039 
413.15 2.180 (00) 8.309 8.138 2.063 
423.15 2.752 (00) 8.199 8.029 2.075 
433.15 3.433 (00) 8.087 7.811 3.407 

The results of the same calculations for all the substances in Table III are better than 5 %. 

h The values in parentheses are the powers of 10. 
"The percentage deviations calculated before the densities have been rounded off. 
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Table I. (Continued) 

T P P~l~ i ) Pcxp, Dev. 
(K) (bar) t' (tool. L -  (tool.  L -  ) ( % ) '  

Xe 

163 8.998 ( - 1 )  22.687 22.635 0.228 
164 9.546 ( - I )  22.617 22.574 0.189 
166 1.071 (00) 22.478 22.452 0.114 
168 1.199 (00) 22.339 22.331 0.038 
170 1.337 (00) 22.199 22.216 -0 .078  
172 1.488 (00) 22.059 22.102 -0 .195  
174 1.651 (00) 21.918 21.980 -0 .284  
176 1.827 (00) 21.777 21.866 -0 .408  
178 2.017 (00) 21.636 21.759 -0 .570  
180 2.222 (00) 21.494 21.637 -0 .667  
184 2.678 (00) 21.210 21.417 -0 .974  
188 3.200 (00) 20.923 21.188 -1 .267  
192 3.794 (00) 20.635 20.967 -1 .610  
196 4.465 (00) 20.344 20.754 -2 .015  
200 5.220 (00) 20.051 20.526 -2 .367  
204 6.064 (00) 19.754 20.289 -2 .710  
208 7.004 (00) 19.453 20.069 -3 .164  
212 8.045 (00) 19.149 19.840 -3 .609  
216 9.194 (00) 18,840 19.596 -4 .015  
220 1.046 ( + 1 )  18.526 19,345 -4 .421 

Table II. Density of tile Liquid State of Fluids at High Pressures ' 't ' 

T P P~.l~ Pe~t ~ Dev. 
(K) (bar) (mol. L -~) (moI.L ) (%)'  

373.15 

CsHI8 

20 5.597 5.608 - 0 . 2 0 4  
30 5.604 5.626 -0 .400  
40 5.611 5.641 -0 .533  
50 5.618 5.656 -0 .668  
60 5.625 5.670 -0 .803  
70 5.631 5.685 -0 .957  
80 5.637 5.696 - I . 0 4 6  
90 5.644 5.711 -1 .184  

100 5.650 5.726 -1 .341 
120 5.662 5.748 - 1.525 
140 5.674 5.775 - 1.778 
160 5.686 5.794 -1 .899  
180 5.697 5.817 -2 .108  
200 5.708 5.836 -2 .251 

To cover the whole range, some results for low pressures inserted. 
t' The results of  the same calculations for all the substances in Table IIl are better than 5 %. 
" The percentage deviations calculated before the densities have been rounded off. 
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Table II. (Continued) 
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T P Pcalc Pexpt Dev. 
(K) (bar) (mol. L - j  ) (mol- L -t  ) (%)" 

413.15 

453.15 

300 

20 5.335 5.283 0.966 
30 5.347 5.306 0.769 
40 5.358 5.329 0.551 
50 5.369 5.348 0.391 
60 5.379 5.368 0.210 
70 5.390 5.384 0.107 
80 5.400 5.404 --0.077 
90 5.410 5.418 -0.139 

100 5.420 5.434 -0.265 
120 5.439 5.465 -0.476 
140 5.457 5.496 -0.710 
160 5.475 5.523 -0.886 
180 5.492 5.548 - 1.019 
200 5.508 5.569 -1.110 

20 5.062 4.927 2.673 
30 5.079 4.960 2.339 
40 5.096 4.991 2.055 
50 5.112 5.017 1.858 
60 5.128 5.043 1.657 
70 5.144 5.069 1.452 
80 5.159 5.093 1.281 
90 5.173 5.117 1.088 

100 5.187 5.141 0.891 
120 5.215 5.180 0.665 
140 5.241 5.220 0.392 
160 5.266 5.255 0.210 
180 5.289 5.287 0.044 
200 5.312 5.316 -0.067 

C6H~ 

1 11.473 
10 11.477 
20 11.481 
30 11.485 
40 11.489 
50 11.493 

100 11.512 
200 11.549 
300 11.584 
400 11.618 

11.280 
l 1.280 
11.290 

1.300 
1.310 
1.320 
1.360 
1.472 
1.534 
1.618 

1.682 
1.717 
1.664 
1.612 
1.559 
1.506 
1.320 
0.666 
0.431 
0.002 

840/17,/4-15 



954 Ghatee and Boushehri 

Table 11. (Conthlued) 

T P Pcalc Pexpt Dev. 
(K) (bar) (tool. L -I ) (tool- L -I ) (%)" 

350 1 10.782 10.581 1.866 
10 10.791 10.590 1.867 
20 10.799 10.607 1.777 
30 10.808 10.616 1.777 
40 10.817 10.634 1.696 
50 10.825 10.642 1.687 

100 10.867 10.705 1.494 
200 10.946 10.822 1.130 
300 11.018 10.933 0.770 
400 11.085 11.037 0.434 

400 1 0.0310 0.0306 1.293 
10 10.057 9.833 2,226 
20 10.073 9.856 2,155 
30 10.089 9.871 2,160 
40 10.105 9.894 2,088 
50 10.121 9.909 2,092 

100 10.195 10.002 1.891 
200 10.331 10.169 1.568 
300 10.451 10.325 1.207 
400 10.560 10.468 0.868 

Xe 

400 10 0.308 0.307 0.273 
20 0.628 0.628 -0.077 
30 0.963 0.963 -0.046 
40 1.313 1.315 -0.176 
50 1.680 1.684 -0.234 
60 2.064 2.071 -0.331 
70 2.466 2.477 -0.437 
80 2.887 2.903 -0.564 

100 3.779 3.813 -0.890 
150 6.158 6.324 -2.703 

500 10 0.243 0.243 0.050 
20 0.490 0.490 -0.067 
30 0.742 0.742 -0.047 
40 0.998 0.999 -0.124 
50 1.257 1.260 -0.216 
60 1.521 1.525 --0.247 
70 1.788 1,794 -0.356 
80 2.059 2.067 -0.390 

100 2.608 2,623 -0.575 
150 4.004 4,053 -1.232 
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Table II. (Continued) 
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T P P~lc Pexpt Dev. 
(K) (bar) (mol. L -1) (moI .L  - I )  ( % y  

600 10 0.202 0.201 0.349 
20 0.405 0.404 0.183 
30 0.609 0.609 0.052 
40 0.814 0.814 -0.020 
50 1.021 1.021 -0.032 
60 1.228 1.230 -0.163 
70 IA37 1.439 -0.118 
80 1.646 1.649 -0.176 

100 2.065 2.071 -0.282 
150 3.112 3.130 -0.586 

Table I11. Input Data Including F 

Substance 
7r Pr Tf 

( J -m -2 )  (tool. m-3) (K) /- 

Ne 

Ar 
Kr 
Xe 

N= 

0.00590 61856.51 
0.0132" 35338.78" 
0.0162 h 29140.81 h 
0.0186' 22635.19" 

24.5 
83.78 

115.76 
161.30 

0.3960 
0.3970 
0.3970 
0.3940 

0.01217 30903.80 63.15 0.4250 

CH 4 0.01856 28257.56 90.66 0.4408 
C2 H 6 0.03224 21909.04 89.88 0.4801 
C 3 H s 0.03689 16640.01 85.46 0.5034 
II-C 4 H Io 0.03224 12391.43 134.48 0.4810 
n-C 5 H 12 0.03361 10552.08 143.48 0.5016 
n-C~ H 14 0.03099 8781.30 177.83 0.4940 
n-C7 H 16 0.03212 7719.70 182.56 0.4950 
n-C s H i 8 0.02919 6709.09 216.37 0.4960 

C6H 6 0.03089 11554.16 278.68 0.4321 
C6 H 5-CH 3 0.04318 10582.32 178.16 0.4985 

"These values are at 84.3 K. 
J' These values are at 117 K. 
' These values are at 163 K. 
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Table I contains the calculated densities for different fluids with a wide 
range of acentric factors including atomic fluids. Table II contains some 
results for the liquids at high pressures. We initially calculated the densities 
for all the compounds in Table III. Only the results for a typical simple and 
complex liquids are presented. The P - T  and surface tension data were 
taken from Refs. 7, 9, and 13. The results for compressed liquids at any 
pressures and temperatures are better than 5 %. This is about the same as 
the accuracy of the prediction based on constants T c, Pc, and co, the crit- 
ical temperature and the critical pressure, and the acentric factor, respec- 
tively [16]. This indicates that the physical properties can be predicted 
from just two scaling constants, the surface tension and the liquid density 
at freezing temperatures, which can readily be measured. Neon shows some 
deviations, although not appreciably, probably due to the quantum effect. 

Our procedure successfully predicts a statistical-mechanical equation 
of state for simple and complex liquids over a wide range of temperatures 
and pressures. It should be mentioned that an equation of state plus a func- 
tional form of the heat capacity allows the fundamental thermodynamic 
properties to be determined. 

The values of F for the different fluids are given in Table III. Although 
it is a characteristic free parameter that incorporates the inaccuracy asso- 
ciated with the temperature-dependent constants too, it is in accordance 
with the earlier finding of a linear relationship for the corresponding-states 
function, G ( b p  ) - J 

In summary, before this work, if experimental values of B2(T) were 
not available, one had a choice of using (i) e and rm, the potential well 
depth and position of its minimum, respectively, or (ii) A H v  and Pr, the 
heat of vaporization (equivalently cohesive energy [ 1 ]) and the density at 
freezing temperature, respectively, to calculate the temperature dependent 
constants in Eq. (2). But accurate values of the second virial coefficient are 
not always available. In, the case that the substance is thermally unstable, 
to allow the vapor pressures to be determined, the present procedure opens 
a simple channel to use Eq. (2) for calculating thermophysical properties 
from just yf and pf. 
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